The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Logistická funkce

Z Multimediaexpo.cz

Sigmoida

Logistická funkce nebo též logistická křivka je reálná funkce definovaná jako

\(f(t;a,m,n,\tau) = a\frac{1 + m e^{-t/\tau}}{1 + n e^{-t/\tau}} \!\)

kde f je funkční hodnota, a, m, n, a τ reálné parametry. Nezávisle proměnnou označujeme jako t, protože logistická funkce se často používá pro modelování vývoje v čase. V počáteční fázi je růst přibližně exponenciální, později s rostoucím nasycením se zpomaluje, a nakonec se asymptoticky zastaví. Logistická funkce se často používá v empirických vědách pro modelování růstu populací, koncentrací a podobně.

Sigmoida

Významným příkladem logistické funkce je speciální případ s parametry a = 1, m = 0, n = 1, τ = 1, tedy

\(P(t) = \frac{1}{1 + e^{-t}}\!\)

Tato logistická funkce se pro svůj tvar někdy označuje též jako sigmoida. Je řešením nelineární diferenciální rovnice prvního řádu

\(\frac{\mathrm{d}P}{\mathrm{d}t}=P(1-P), \quad\mbox{(2)}\!\)

s okrajovou podmínkou P(0) = 1/2. Používá se často jako sponová funkce (link function) ve statistických modelech (logistická regrese).

Význam

Logistické křivky se objevují jako řešení různých modelů například v demografii, biologii a ekonomii.

Související články