The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Substituční metoda (integrování)

Z Multimediaexpo.cz

Substituční metoda je metoda používaná při počítání s integrály. Při této metodě zavádíme do integrálu novou proměnnou.

Pokud lze funkci \(f(x)\) vyjádřit na intervalu \((a,b)\) ve tvaru \(f(x) = g(h(x))h^\prime(x)\), kde \(h^\prime(x)\) je spojitá v intervalu \((a,b)\) a \(g(z)\) je spojitá pro všechna \(z=h(x)\), pak pro \(x \in (a,b)\) platí

\(\int f(x) \mathrm{d}x = \int g(h(x)) h^\prime(x) \mathrm{d}x = \int g(z) \mathrm{d}z = G(z) + C = G(h(x)) + C\), kde byla použita substituce \(z=h(x)\).

Jiným případem je substituce \(x=\phi(z)\), kde funkce \(\phi\) je monotónní pro všechna \(z\) z intervalu \((\alpha,\beta)\) a má na tomto intervalu spojitou derivaci \(\phi^\prime\). Potom platí

\(\int f(x) \mathrm{d}x = \int f(\phi(z)) \phi^\prime(z) \mathrm{d}z = H(z)+C\)

Výsledek získáme tak, že ze vztahu \(x=\phi(z)\) vyjádříme proměnnou \(z\) a dosadíme do \(H(z) + C\).

Substituce ve vícerozměrných integrálech

Uvažujme uzavřenou n-rozměrnou oblast \(M\) v proměnných \(x_i\) pro \(i=1,2,...,n\), a uzavřenou n-rozměrnou oblast \(N\) v proměnných \(y_i\). Mezi oblastmi \(M\) a \(N\) nechť existuje vzájemně jednoznačné zobrazení \(x_i = \phi_i(y_1,y_2,...,y_n)\),
přičemž existují spojité parciální derivace prvního řádu \(\frac{\partial \phi_i}{\partial y_j}\) pro všechna \(i, j\) a jakobián \(\frac{D(x_1,x_2,...,x_n)}{D(y_1,y_2,...,y_n)}\) je nenulový, tzn. \(\frac{D(x_1,x_2,...,x_n)}{D(y_1,y_2,...,y_n)} \ne 0\). Pokud je na oblasti \(M\) definována spojitá ohraničená funkce \(f(x_1,x_2,...,x_n)\), pak

\({\iint\cdots\int}_M f(x_1,x_2,...,x_n) \mathrm{d}x_1 \mathrm{d}x_2 \cdots\mathrm{d}x_n = {\iint\cdots\int}_N f(\phi_1(y_1,y_2,...,y_n),\phi_2(y_1,y_2,...,y_n),...,\phi_n(y_1,y_2,...,y_n)) \left|\frac{D(x_1,x_2,...,x_n)}{D(y_1,y_2,...,y_n)}\right| \mathrm{d}y_1 \mathrm{d}y_2 \cdots\mathrm{d}y_n\)

V případě dvojného integrálu, kdy mezi oblastí \(M\) o souřadnicích \(x, y\) a oblastí \(N\) o souřadnicích \(u, v\) existuje vzájemně jednoznačné zobrazení \(x=x(u,v), y=y(u,v)\), má jakobián tvar

\(\frac{D(x,y)}{D(u.v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}\)

Je-li \(\frac{D(x,y)}{D(u.v)} \ne 0\), pak dostaneme pro funkci \(f(x,y)\)

\(\iint_M f(x,y) \mathrm{d}x\mathrm{d}y = \iint_N f(x(u,v),y(u,v)) \left|\frac{D(x,y)}{D(u.v)}\right| \mathrm{d}u\mathrm{d}v\)

V případě trojného integrálu, kdy mezi oblastí \(M\) o souřadnicích \(x, y, z\) a oblastí \(N\) o souřadnicích \(u, v, w\) existuje vzájemně jednoznačné zobrazení \(x=x(u,v,w), y=y(u,v,w), z=z(u,v,w)\), má jakobián tvar

\(\frac{D(x,y,z)}{D(u.v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}\)

Je-li \(\frac{D(x,y,z)}{D(u.v,w)} \ne 0\), pak pro funkci \(f(x,y,z)\) dostaneme výraz

\(\iiint_M f(x,y,z) \mathrm{d}x\mathrm{d}y\mathrm{d}z = \iiint_N f(x(u,v,w),y(u,v,w),z(u,v,w)) \left|\frac{D(x,y,z)}{D(u.v,w)}\right| \mathrm{d}u\mathrm{d}v\mathrm{d}w\)

Související články

Externí odkazy