The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Vážený průměr

Z Multimediaexpo.cz

Vážený průměr zobecňuje aritmetický průměr a poskytuje charakteristiku statistického souboru v případě, že hodnoty v tomto souboru mají různou důležitost, různou váhu. Používá se zejména při počítání celkového aritmetického průměru souboru složeného z více podsouborů.

Pro výpočet váženého průměru potřebujeme jednak hodnoty, jejichž průměr chceme spočítat, a zároveň jejich váhy.

Máme-li soubor \(n\) hodnot

\(X = \{x_1, \ldots, x_n\}\)

a k nim odpovídající váhy

\(W = \{w_1, \ldots, w_n\}\),

je vážený průměr dán vzorcem

\(\bar{x} = \frac{ \sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}\)

či

\(\bar{x} = \frac{w_1 x_1 + w_2 x_2 + w_3 x_3 + ... + w_n x_n}{w_1 + w_2 + w_3 + ... + w_n}\)

Pokud jsou všechny váhy stejné, je vážený průměr totožný s aritmetickým průměrem. Ačkoli se vážený průměr chová podobně jako aritmetický průměr, má několik nezvyklých vlastností, které jsou například vyjádřeny v Simpsonově paradoxu.

Vážené verze jiných průměrů lze také spočítat. Příkladem je vážený geometrický průměr nebo vážený harmonický průměr.

Příklad

Řekněme, že škola má dvě třídy, jednu s 20 studenty a druhou s 32. Bodové ohodnocení v každé třídě při jednom testu bylo

  • Třída A — 62, 67, 71, 74, 76, 77, 78, 79, 79, 80, 80, 81, 81, 82, 83, 84, 86, 89, 93, 98
  • Třída B — 80, 81, 82, 83, 84, 85, 86, 87, 87, 88, 88, 89, 89, 89, 90, 90, 90, 90, 91, 91, 91, 92, 92, 93, 93, 94, 95, 96, 97, 98, 99, 100

Aritmetický průměr bodů ve třídě A je 80, ve třídě B je 90. Když spočítáme aritmetický průměr 80 a 90, dostaneme 85. Toto ovšem není aritmetický průměr bodů všech studentů. K jeho určení potřebujeme spočítat součet všech bodů a vydělit počtem všech studentů, tedy

\(\bar{x} = \frac{4480}{52} = 86,15385\)

Nebo si můžeme pomoci váženým průměrem a spočítat vážený průměr průměrů bodů obou tříd použitím počtu studentů jako vah:

\(\bar{x} = \frac{20\cdot 80 + 32\cdot 90}{20 + 32} = 86,15385\)

Nyní jsme již nepotřebovali znát, k spočtení aritmetického průměru všech bodů, jednotlivé známky, stačily nám pouze aritmetické průměry a počty studentů v jednotlivých třídách.

Příklad z praxe

Průměrná denní teplota se v meteorologii stanovuje jako průměr z teploty vzduchu naměřené v 7 hodin, teploty ve 14 hodin a teploty v 21 hodin, přičemž poslední údaj se započítává s dvojnásobnou váhou. Platí tedy

\(\bar{t} = \frac{t_7 + t_{14} + 2\cdot t_{21}}{4}\)